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Abstract

Applications are described of two estimation techniques to obtain final

pulsive loading on the transverse (beam) member. Deflections up to roughly ,;
one third the span (thirty thicknesses) are estimated by the mode approxima- .
tion and deflection bounds techniques, treating the plastic rate dependence

by means of homogeneous viscous constitutive equations. Comparisons are made

ok

with recent test results, and the degree of agreement is discussed in terms of

the known error sources of the two techniques.
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umi: VISCOPLASTIC DEFLECTIONS OF IMPULSIVELY LOADED PLANE FRAMES

1. Introduction
The impulsively loaded plane frame considered here is assumed to exhibit

strong plastic rate sensitivity and to reach large deflections. We shall des-

cribe applications of the mode approximation technique and of the deflection
bound method to this type of structure. Experiments intended to check on these
methods have recently been made [1]. The comparison between predictions of the

estimation techniques and the test results is discussed in order to assess the

relative importance of the intrinsic errors of the methods, and those due to

further idealizations and lappmximativons made in their application to this type

b

of structure. : : : 1
The two types of frames considered are shown in Fig. 1. Type (a) in Fig.

la has a concentrated impulse appiied to a small block at the midpoint of the

TR

E beam (transverse) member, while type (b) in Fig. 1b ﬁas a distributed impulse

E applied over this member. These loads are idealized as impulsive (zero duration),
| imparting specified initial velocities with negligible initial displaceménts.‘

i‘ Symmetric deformations are expected, the main displacement magnitude being the
displacement at the midpoint C of the beam member. At large deflections such

as indicated in Fig. 2b, a finite lateral displacement occurs at the top B of

PR T

each column. The particular frames studied here and in the related tests had

: lengths L, = 5.625 in. in the case of the "type (a)" frames, L,

the type (b) frames, with 1..2 = 8.00 in. in both cases. Two strongly rate-

= 6.00 in. for ' 4

t . sensitive metals, mild steel and commercially pure titanium were used. In ‘these
circumstances the larpe deflections have primarily kinematic effects, without P
7 : requiring drastic changes in the stress field; the response remains primarily

flexural. -
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2. Basic Concepts_ and Eguations

The essential concepts of the two techniques will be outlined brief}y. Pur-
ther information on the approaches may be found for the bound method in [2, 3]
and for the extended mode apnroximation technique in [3, 4]. e |

The deflection bound method for a structure of viscoplast;ip‘gla,;ez:-i{e;, sub-
jected to j.npuv_lzsi__ve.pvessgx!'e;, at t <0 and thereafter unloaded, !?Q?i???;,}’h9
solution for quasi-static deflections due to a certain concentrated force P:n 3
if the deflection is sought at point A of fhe structure (located by appropr-
iate coordinates xA) in direction n (a unit vector), P> is applied at

An

this point and in this direction. If the force PSf is such that it does work

An
at least eaual to the specified initial kinetic energy of the structure, then
the displacement on which it does work is an upper bound on the same deflection
quantity in the meponse to the given dynamic loading. If t £ is the time at
whicﬁ the plastic deformation is combleted, the theorem requires the work of the

force P:n to be done in time t £ (For a time-dependent material the work to

‘reach specified final strains depends on the time in which they are reached.)

In mathematical terms the bound theorem states that

uf ¢ uf

An An (1a)

where u:n is the final displacement at point A in direction n of the dy-
sf

namically loaded structure reached at time tf 3y and “An the displaoenent at

time t £ due to the static force PAn 3 the mequality holds provided
K. € ﬁ(q‘f)dv o g b ik o Aab).
° 3
. ‘v y :
where Ko j.s the initial kinetic energy of the 1pnpuJ,si\(ely loaded structure

and the right-hand side mpnesents the work done by the force P:n

terval of time O ¢ t ¢ te s H(q 1 denotes work per unit volume written as

in the in-
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function of the terminal generalized strains q?f 3§ =1,..r, for general-
hed Straln end stidss srates having r components. :

As noted above, this work depends cn the interval t, . 'Generally it
also depends on the pénth, i.e. = on the sequence of strain ‘sta’:t'ét" from the in-
ftlal to the terminal. We have eliminated path dependence by using concepts
of minimum work naths [2, 3], W denoting the work per unit volume which is

a minimum for giveﬁ terminal strain. The total work is evaluated as

o n
[ Wav = n [ﬁ%ﬂtf{/ ?(Ozf)dV ' : frie i Dadde)
v

where Y(Q?f ) ' is a homogeneous function of terminal stresses Q:f » whose de-
gree of homopeneity is 'n + 1. More penerally, the function ¥ furnishes con-

stitutive equations relating stress to strain rate states in a convenient form,

from the property

. A
s = ao’i : (2)
where q g are strain rate components.

The "intrinsic error" of the deflection bound is positive: an upper bound
is obtained. In this statement the comparison is made between a computed quasi-
statié &thim accotﬂinp, tp a certain mathematical model, and a deflection
resulting from impulsive loading on the structure mprésented by the same model.
When couparﬁcn is made inétead with the final deflection of an actual structure
as opposed to a 'uthematical model, the idealizations and approximations adopted
in the calculation of qu

An
zations are indicated above; they will be discussed with others more fully in

may introduce further errors. Some of the ideali-

a later uétiu. Obviously the aim is to make the calculation in such a way
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that tb- incidental errors are minor compared to the 1ntr£nsic ones. 'rhc nud
for. coqau‘i.sons vith experiments rather than merely with caqauter outpnts is

also obvious. 7 \ Ll
'rhc emntial oonecpt of the mode technique is that of obtaining an ap-

_proximation to the actual response from a simpler solution which satisﬂes all

the field e:quationia (dynamics, kinematics including bo@dazy fixing’ coxgdi‘tvions,
and constitutive equations), but disagrees in general with the imposed initial

velocities. Such simpler solutions can be found under certain conditions in

- modal form, with velocity field, for example, written as

ot

u,(x,t) = T(t)¢,(x) (3)

3 i
where i =1, 2, 3; T(t) is a scalar function of time t; and ¢,(x) is a
vector-valued function of space coordinates x . The initial velocities

ot i (

“i(x’O) = Tooi(x) 4)
where T, 3 T(0), usually differ from the velocities specified at t = 0, namely

4, (x,0) = uf(x) (5)

since thc. shape functions Qi(x) are properties of the structure. However

the initial magnitude T_ can be chosen optimally by taking £s]

*0
'ro = [ pui¢1dv [ p’ioid\l (6)
v v

where p is the mass density and the integral is over the volume V of the

structure. This value of T  minimizes the initial magnitude of the follow-

ing functional:

A(t) = ALy, (x,t) - \'x:(x.t)] . ;-f plu, - a:m'.i " 6’;) & (D
v

i




It}hu hnn shown [6] for a wide class of material behavior of essentially
Viécoﬁé type (gen;i'aliied strain rates written as functions of genémli’zed
stress) that A(t) is a non-increasing function, and decreases whenever plastic
flow occurs and the two solutions do not have identical stresses or strain rates.
‘Thus"the actual velocity field and that of the mode solution approach each other
‘in this sense. With T, chosen according to Eq. (6), the two solutions may
become identical after a certain interval. The final major displacement com-
puted froh the mode solution is therefore usually much closer to that of the
structure than the initial mode amplitude is to the corresponding given initial
velocity.

The final major deflection of the mode response will be greater or less
than that of the structure whose initial velocity is the specified one, depend-
ing on whether the initial mode velocity field is more or less concentrated than
the given velocity distribution. This intrinsic error evidently can be posi-
tive or negative. Here again the "error" refers to quantities computed using
a certain mathematical model to represent a structure. The calculation of the
mode response involves idealizations and approximations, and whén the results
are compared with deflections and response times of a real structure; further
errors may appear. These will be discussed in a later section.

The mode method requires the integration of the equations of the structure,
from the initial mode form velocity field to the end of the motion. This in-
tegration presents no difficulty if the equations allow the separated-variable
form of Eq. (3) to hold during the entire response. If small-deflection eq-
uations are not used, such "permanent” mode solutions do not exist. A conven-
ient way of performing the integration in these cases is by means of a sequence :
of "instantaneous'" mode form solutions [3, 4]. At finite deflections the so-
lution can be put in the form of Eq. (3) if the deflection is repgarded as in-

stantaneously fixed and known. Thus the instantaneous shape function oi(x)

gz

v i e s Y




T T

R ———

<t>
changes during the response and may be written as Ol(x). Successive '"solutions"”

in this furm are linked through equations of the form

: <t.> <t *1’
uglxet L) = u Ot ) + 55 IT(E Des(x) + T(t_, )e3(X)] (8a)
At :
T(ty, ) = Tt + S5 0He) + (e, 0] (ab)

This method is not exact, even though the field equations are instantaneously
satisfied; the mode solution has a smaller energy dissipation rate than the actual
motion at the same level of kinetic energy [7]). This method may be expected to
lead to a response of longer duration and larger deflections than the actual
motion of the structure would be under the same starting conditions, so that the
approximation due to ‘this device for carrying out the integration for large de-
flections is therefore expected to be conservative.

Here we write the equations used in both the mode technique and the deflec-
tion bound method; the dynamical equations for the latter are obtained by setting
the accelerations equal to zero.

The notation is indicated in Fig. 2b. We use rectangular coordinates x, y
with origin at the base. A of the left-hand column. Velocity components are

shown in Fig. 2b. Nondimensional quantities are used, defined as follows

x =Y e !
x=L1 3 y-L2 2 t ey (9a)
wof . e aEEGE o
H 9t H ot

where X, y; t; u, w are coordinates, time, and displacements in physical

units, H is thickness, and 1 = 2L1/p7o° is a reference time, p being




mass densitv and o, being a stress property obtained from tests on strain
rate dependent plastic behavior, as defined more fully below. For peneral
stress and strain states in a one-dimensional structure, relations between
bending moment, axial force and the corresponding strain rates are required. ¥

We take the viscoplastic behavior to be expressible in the form

1/n 4
] sione 0 (10)

where o , ¢ are uniaxial stress and plastic strain rate, respectively, cor-

responding (in peneral) to a fixed level of plastic strain e? 3 and o,

€ o * R are experimental constants appropriate to that level. For mild steel
the pair o , ¢ are more appropriately taken as lower yield stress and cor-

responding strain rate, respectively; then 9, has the significance of yield

stress at zero strain rate. Equation (10) is capable of very good represent- i
ation of observed dynamic¢ plastic behavior for the metals with strong strain

rate sensitivity, provided strain rate history effects are negligible. General-

izations of Eq. (10) are easily written, e.g. [4, 8]. These involve a yield

condition, plastic strain rates being zero for stress states inside a yield

surface. We adopt a simpler form derived from that of Eq. (10), which is homo-

geneous and involves no yield condition [9]). This "matched viscous" represent-

ation replaces Eq. (10) by
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and (11d)

<1
"
MelMmel

o

where € is the strain rate at which the two expressions, Eq. (10) and (lla),
are matched in the sense of having the same stress and slope do/de. In gener-
alized forms, E is the appropriate effective strain rate.

The following expressions are generalizations of Eq. (lla) appropriate for

general states of stress in our frame:

.1 . . l/n' - . . . : e . i

m= -2~u{tz +nl sen(€ +n) + [€-n] sgn(E - n)} (12a)
l . . l/n' . . - . l/n' . .

s 513{]5 +n sgn(€ + n) - |€ - n| sgn(E - n)} (12b)

where ‘/mzﬁg?—n, s=Ag— ,‘ é=f—-, ;l=::—" {12c)
o o K €
o o

o R T Be " Thy s T N Ve ; (124)

M , N being physical bending moment and axial force, respectively and K 5 ¢
being curvature rate and axial strain rate respectively in physical terms. Al-
though derived from a sandwich beam model [2, 3, 4], the values for pure bend-
ing and extension are either exact or extremely close to the correct values for
a rectangular solid section. These constitutive eqt_nations are conservative in
the sense that for a given strain rate state the stre.s levels are less than
those in the solid #ection;

' We next write the strain rate components in terms of velocity and displace-

ment components in the two members AB and BC, using dimensionlessr variables

(see Eqs. (9, 12) and Fig. 2):




A Ao ol g S5 M B 5 a7 B L s o305 s 0 s o it

9 4
. l Li . . l . |
o M e " 53 AL " e
e ¢ tre s VBC (13a,b)
| 2
? ° i ‘I!_ E‘i < L2 ‘q" g u' £ (130)
"B @ (2 |7 & "as " Yan"an y
L2
o ot . (13d)
BC  a ﬁ—-“n Be

Sl @ g g
where a = uLleo't/H (BLlEo/H )v‘oloo

and a prime denotes differentiation with respect to y in AB and to x in
BC; note that 0 <y <1, O0 < x<1. The expressions for axial strain rate
in Eqs. (13c, 13d) contain terms where the deflection curve appears through the

rotation (slope), as in the "von Karman equations" of buckling theory. They

are second order cox;rection terms, valid for deflections of moderately small size

compared to the span.

The equation of energy -dissipation rate can be written for both types of

-
4

frame as

th

L ; 3
= °i.3' (mA
1

0

8°ap *

1 1
L2 . . .
i ET'[ (“An ap t AB"AB)dy " [ (“rc“sc * Yae¥Be

0

0

1
S \5ap 9y *“((” caet Snc"me

(14)

where k = G/29bHL1, and ;'1 = v'vBc(l,t), ;;1= fv'Bc(l,t) are velocity and accel-

eration of the block of mass G. When applied to the frame with attached mass, ‘

L, is given the reduced value 5.625 in.; for the frame without attached mass, »

k=0 and les.oom. |
The equations of dynamics, end conditions, and equations of continuity &

consistent both with the kinematic forms of Eqs. (13) and the dissipation-

e e TS




energy rate equation (l4) are derived as the Euler equations of the latter,
the velocities and associated strain rates being treated as virtual quantities.

The dynamical equations are found to be

m". + u4(s )

1
AB AB"AB

" L} L
L u(s ch)

' -
AB

End conditions are:

mea(l,t) = - kﬁnc(l,t)

wpo(1,t) = Géc(l,t) = ﬁBC(l,t) =0 (16b, c, d)

Equation (16) is recognized as the equation of motion of the attached block;

k 1is put equal to zero for the frame without attached mass.

At A,y =0 : u,.(0,t) = up(o,t) = w, (0,t) = 0  (17a, b, ¢)

At B, y = 1, x = 0; continuity conditions are found to be
Upp(15t) = Up (0,8)5 W p(1,8) = wo (0,t) (18a,b)

L
mp(Lot) = me (0,); L§-6A3(1,t) = W50 (0,1) (18¢,d)

£

WAL (L,t) + 45, (1 Dupp(1,6) - 8,5 5,0(0,8) = 0 (18e)




PO VTR TRy o0 RGO W L A iy R e R

11

L

4 ﬁi s,p(Lat) + ML (1,8) + sy (0,8)wp(0,8) = O (18f)

We have made the assumption, in calculations made to date, that the deform-
ations are flexural, with unimportant effects due to lengthening or shortening
of frame members. This is reasonable in view of the proportions. Hence the
simplifying assumption of inextensibilify was adopted, with n=0 in both
members. The axial forces are then reactions, and Eqs. (12¢c, d) furnish re-

lations between axial and transverse velocities:

. H s .

H .
LR (] o e L L []
“aB * T,"as"AB  * Upc LlVac"ac (19a,b)
The constitutive equations then reduce to those for pure bending:
X . l/n' . - i) . l/n' .
myp = MlEgpl T smmE g 5 mp = wlER [T sem g, (19a,b)

In the mode approximation technique we look for solutions in separated-

variable form, writing

"
"

GAB(y,t) &*(t)»tl(y) - GBC(x,t) G*(t)¢l(x) (20a,b)

Up(yst) = W (£)a,(y) 5 Up(x,t) = W (t)g,(x) (20c,d)

where 01 =1 at x=1; thus Q* = &Bc(l,t) is the transverse velocity at
midpoint C (the major velocity magnitude). With these forms substituted in the
equations of dynamics Eqs. (15) and the kinematic relations Eqs. (13), it may be
seen that the system of equations can be split into ordinary differential equa-
tions containing either space or time variables, provided the rotation terms from
the current deflection field are regarded as fixed. If these are treated as
known at some stage of the response, the resulting eigen-problem can be solved
to furnish the corresponding shape functions Ql and 02 s and the current

acceleration ;* and velocity G* ‘
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Details of the integration by an iterative scheme are given in the Appendix.
The deflection bound is determined by a closely related numerical scheme, also

outlined in the Appendix.

The integration of the nondimensional equations, starting from an initial
velocity field G:o(x), can be completed once values are assigned of the par-
ameters a , n , Ll/L = L1/H » as well as of the initial velocity amplitude
G: . (Note that u and n' = vn are obtained from these and the current
strain rates). The end of the motion occurs at time tg such that 5*(t}) =0,
and the final deflaction components are w£¢l A w£¢2 . The final deflection

amplitude and response time can be presented as

-f

Wa £ ;

= Wa S Fl(w*, a, n, Ll/H’ Ll/L2’ k) (21a)
2 ¢ i

;—'= tf=F2(W*| s Ny Ll/H: Ll/L2' k) (2]1))

3 i das il L ‘
where we recall T = 2Ll p/o, » a= (BLlco/H ) /0700 s Kk = G/2Llpr.
Examples of plots of wf and t% as functions of wy for various values

of the material and geometrical parameters are shown in Figs. 3 and 4. The de-

crease of velocity amplitude to zero is illustrated in Fig. 5. The two sets

of curves of Fig. 3 illustrate how the parameters a and n afféct the

final deflection, the remaining parameters of Eq. 21 being held fixed. The
curves of Fig. 4 indicate how the duration time is affected. Weak dependence

on both a and n is evident. For example, multiplying a« by 1/4 or 1/100
reduces the deflection by only about 10 percent or 50 percent, respectively.
Fig. 3b shows that dependence on n is similarly weak. The insensitivity

to these parameters can be understood from the form of the equations. For

example, the energy rate - dissipation equation based on the mode-form
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velocity field is
a 5 s . |i/n! 1*%1 1*l'
w.[[(01+¢2)dz+k]=-[_*_] '-2‘-1 [ly+el P+ ly-e ™lar (22) 1
a
L L ;

where the line integrals extend over the half-frame ABC , and

L, L3 Li L,
e A2 - - " = i ] !
On AB : dt = y-dy , ¥ <0, e n—2( ﬁ"i*“w‘z)
1 L L
2 2
l'l '
" = = - " = ) ]
On BC ¢ d& = dx , Y ’l . e u[ ﬁ'¢2 + "AB’I]

Here, as in all equations of the system, a appears only in the combination

]
)lln . Since n' = vn , where v depends on current strain rate (Egs.

(wy/a
(11c)) and is often approximately 2; and since n. is large (5 for steel or 9 for
titanium), the weak dependence on & is evident. We obtain results for a
perfectly plastic material by putting w =1, n' + @ ; as expected, then the
acceleration is indepéndent of velocity and the parameter a disappears.

This insensitivity to a and n is an advantage in applications. Once
the integration has been carried out for nominal values of the parameters, giving
curves of wf and te as function of G: over a suitable range, these curves
can be used for many particular cases of interest. For the uniform frame two such
curves are shown in Fig. 6 for "steel" and "titanium", and an analogous pair of
curves is shown in Fig. 7 for the frame with attached mass. An inverse procedure
is used to apply these to the data of a particular test. First, the initial
velocity matching formula Eq. (6) of the mode approximation is written(in terms

of nondimensional quantities). Then from the relation between measured impulse

I in physical units and the non-dimensional initial velocity Gz , the impulse I

corresponding to a particular Q: is obtained. Thus we obtain ﬁf/ﬂ and




t, = ‘Ef/T as functions of I. The results for the two types of frames are

1
(a) Frame with 5 %3- = bR® /poo f oidx +k (23a,b)
attached mass Wa o

1
2
(b) Frame with ‘ I %

: g °
uniform beam —2——— ;;'o = bH /ooo iyt (23c,d)
¢ldx % f $.dx
1
° o

Taking data for the two types of frame and two materials, final deflection
ratios are shown in Figs. 6 and 7 as functions of nondimensional mode velocity
6: . From these using Eqs. (23b, d) are obtained curves of deflection versus
impulse in physical units. Examples of such curves are given in Figs. 8-12, with
points shown also from tests [1].

In computing the impulse I corresponding to a chosen value of J: from
Eq. (23b,d), values of b, H, p and 9, ‘appropriate for a particular test series
are used, and these are used also to determine the appropriate value of the par- :
ameter a = (BLiéolﬂz)/WF; . However in view of the insensitivity of the curves
for wf vercus G: to a , it is evident that a curve for a nominal value of
a can be used for other cases. Thus the curves of Figs. 6 and 7 serve as
"master response curves" for frames of a certain type of material and geometrical
configuration.

To illu&rate, a nominal value of a for the steel frames tested [1] may
be taken as 550, comSponding to material and geometrical values in Table 1 of
[(1]. In particular, o m 33,100 psi was used, from strain rate data on the
material of those tests. Thus for example, a final deflection ratioc wf = Gf/H = 20
corresponds to a nond:lnensiénal initial mode velocity \3: = 18.0. Using Eqgs.

(23) with H = 0.123 in., a final deflection of 2.46 in. is estimated to require
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a uniformly distributed impulse I = 0.75 lb-sec, as plotted in Fig. 10. Now
suppose a frame of the same dimensions but of higher strength steel with .
90,000 psi is to be considered. The new a would be 550/33,.1/90 = 334, but
the same "master curve" of Fig. 6 can be used, since the change due to a 40
percent reduction in a is negligible, by Fig. 3(a). Hence the impulse on
the stronger frame required to produce the same deflection can be estimated as
0.75/30733.1 = 1.2 lb-sec.

This simple type of calculation was used in analyzing the tests [1] to
estimate the effect of strain hardening in the titanium frames. The values
of 9, » Py and éo depend on the plastic strain at which (o , €) are ob-
served in tests at nominally constant strain rate. At =1 percent and 2
percent, values of o, were determined as 35,000 psi and 38,000 psi, respect-
ively. Values of total impulse for both values are shown for the estimated
deflection curves for titanium, Figs. 9 and 11. In most applications one sim-
ilarly wants to explore a range of values of various parameters, including var-
ious load distributions over the structure. It is seen that the present tech-
nique is pu'ticuiarly efficient for such explorations, and contrasts with the

typical wholly numerical approach.

3. Comparisons with Test Results

As already noted, experimental results [1] are now available for check-
ing the estimation techniques. The basic concepts (minimum potential energy
and the mode velocity matching device of Eq. (6)) are not in doubt, but the
magnitudes of the intrinsic errors in estimates of deflections and response
times are unknown. Unless these errors are reasonably small, and unless the
further errors involved in implementing the techniques are also reasonably

small as well as generally predictable as to sign, the methods will remain

R ——————--
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of uncertain meaning and limited usefulness. Thus the experiments are crucial
for assessing the relative importance of the two classes of errors, and for
confirming or otherwise our expectations as to the incidental sources of er-
ror.

The deflection upper bound curves plotted in Figs. 8-11 in every caser lie
above the test points, indicating thati the incidental errors in this calcul-
ation are either small or predominately positive; However, for the mode tech-
nique the situation is not so clear. For the coﬁceﬂtratea impulse tcst; (frame

type (a)) the intrinsic error is negative, since G: < v'::

from Eq. (23a); for
the uniform impulse tests (on frames of type (b)) wj > v;: from Eq. (23c),

and the intrinsic error is positive. If all other errors were negligible, we
would expect the tests points to lie above the estimated curves (for finite
deflections) in.Pigs. 8 and '9, and to fall below them in Figs. 10 and 11. No
such consistent relations are discernible in these figures. In the case of the steel
frames with either concentrated or distributed loading the test points lie es-
sentially on the estimated curve (although for concentrated impulses they tend
to be consistently higher at the larger impulse magnitudes). For the titanium
frames under concentrated impulses the test deflections fall well below the es-
timated curves, although approaching them at the larger impulse magnitudes.
Under distributed impulses the titanium frames showed final deflections agree-
ing quite closely with the estimated curves. (For titanium two estimated de-
flection curves by the mode method are drawn, for two values of °o 3 as already
noted, these correspond to two choices of strain level). The fact that the
experiments do not clearly show the intrinsic errors suggests that they are
masked by effects of the further idealizations and approximations made in apply-

ing the mode technique. We next list these and consider them briefly.
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(1) A "rigid-viscoplastic" theory was used: elastic deformations were neg-

lected (eiastic moduli taken as infinite). Here we are considering
strongly rate sensitive metals so that stress levels are raised and elas-
tic strains probably increased in importance. On the simplest basis, we
may suppose that the energy ratio R of initial kinetic energy to total
elastic strain energy capacity must exceed about 6 for an error of less
than 15 percent in the permanent deflection; this takes over a result [10]
derived from a one-~degree-of-freedom model and seems conservative for per-
fectly plastic behavior. The values of impulse required for R 3 6 are
indicated in Figs. 8-11. If the same results held for the present rate
sensitive materials there would appear to be some correlation between this
(arbitrary) criterion for the neglect of elastic deformations and the ex-
perimental discrepancies. In the one case where the criterion is not
satisfied in some of the tests, namely the concentrated impulse tests on
titanium frames shown in Fig. 14, the test points at the smaller impulse
magnitudes fall considerably below the estimated deflection curves, but
approach them as the impulse is increased. Note that for this case the
intrinsic error is negative (the test points should lie above the esti-
mated curve in the absence of other errors); hence the effect of elastic
deflections would be even larger than indicated.

As already noted, errors due to elastic effects may be larger when the
material is strongly rate sensitive than indicated by the criterion ap-
plied, as above, for perfectly plastic behavior. The omission of elastic
deformations makes for substantial simplification, but further basic re-
search is needed to determine what errors are likely to be caused by it.

It should probably be regarded here as a major suspect.
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(2) The constitutive equations express plastic strain rates as explicit func-
tions of stresses, with implicit account of strain hardening through the
experimental constants. If the arbitrarily chosen plastic strain level
is low (or if the lower yield stress is used rather than a fixed strain
level), equations of this type would underestimate strain hardening and
hence lead to over-estimates of deflections. However, as illustrated for
the titanium frames, it is easy to deduce deflection estimates based on
a larger magnitude of plastic strain, and thus to take account of strain
hardening.

(3) Strain rate history effects were neglected, the experimental constants
being obtained from tests at nominally constant strain rates. The in-
fluence of prior strain rate history has been studied mainly by tests in
which the strain rate is rapidly increased [11]. A few tests involving
a rapid decrease have been described [12]; these would be more directly
relevant to the present response histories, where the structure is set
in motion in a very short time, after which the strain rates decrease to
small values, perhaps roughly monotonically. On the basis of various
hypotheses to account for observed history effects, in §articu13r the use
of plastic work as a state variable [13] and dynamic recovery [14], one
would expect strain rate history effects in the present case to lead to
positive errors, i.e., to cause the test specimens to deflect less than
the estimated value. The data are quite limited, but there seems little
reason to expect that such errors would be important here.

(4) Constitutive equations of homogeneous viscous type (without yield con-
dition) were used, derived from inhomogeneous forms based directly on
strain rate test data. The matching formula used (Eqs. llc) is such that

the stress levels are lower, at the same strain rate, than those accord-

e S A
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(6)
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ing to the more realistic forms. Hence over-estimates of deflections are
again expected. The errors due to this device have been very small in the
examples worked to date [3, 9]. Experience is limited, but there seems

no reason to expect large errors in the present cases.

The deformation is assumed to remain flexural at large deflections, with

axial forces treated as reactions. Expressions for center-line strain
rate in terms of transverse and axial velocity components are of second
order accuracy (product of rotation by rotation rate). Setting the axial ¢
strain rate equal to zero furniches relations between the velocity com- J
ponents, involving the transverse deflection.

The errors due to the use of approximate strain expressions at fin-

ite displacements, and to the assumption of zero net center-line strain

rate are difficult to assess as to magnitude or sign. The second order
terms are those widely used in approximate theories of buckling, but are
clearly valid only in a range of "moderately large' deflections. At final
deflections appmach:lhg a third of the span, this representation is quest-
ionable. The treatment of axial forces as reactions which do not contri-
bute to the energy dissipation rate implies a certain over-estimate of
local strength. However it does not seem possible from this to argue how
the final deflections will be affected. Intuitively we feel that the er-
vors due to these aspects are not serious ones, but further investigation
is necessary.

The pressure pulse is idealized as "impulsive", delivering finite impulse
in vanishingly small time. It is well known that this idealization leads
to over-estimates of major deflections [15) when applied to rigid-perfectly
plastic structures using small deflection equations. The error in the

over-estimate in those cases can be shown to be given approximately
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by the ratio of the pulse duration to the duration of motion of the struc-

ture. These results certainly do not apply exactly to problems where visco-

plastic and large deflection effects are important. However in the present
problems the pulse duration is very short compared to the response time of
the structure (roughly 10 usec compared to 10 msec), and the resulting er-
ror is believed to be positive but of minor importance.

The integration technique used to obtain final deflections of the structure
with initial mode form velocity employed "instantaneous mode" solutions

at a sequence of times, each such solution cormesponding to the current de-
flection field. They are linked by proper differential relations only at
one point of the structure, where the major velocity and deflection magni-
tudes occur. Hence although current field equations are satisfied, some
continuity conditions are disregarded. Extremal theorems are available for
the small-small equations [7, 16]. These can be applied to the current
state and show that the mode form velocity field renders the energy dis-
sipation rate an extremum among all kinematically admissible fields with
the same kinetic energy. Here the extremum is a minimum, and the theorem
characterizes the mode form solution as minimizing the rate of decrease of
kinetic energy, for a fixed level of kinetic energy. The error in using
this tichnique is therefore inferred to be positive.

Apart from the basic approximation in treating the actual motion as a se-
quence of instantaneous modes, the determination of current mode shapes

and accelerations involves solving a nonlinear eigenproblem by numerical
means. This was done by an iterative scheme, as outlined in the Appendix.
The numerical scheme made use of a subdivision of the column and half-span
into 100 elements. It furnishes an essentially exact solution at low cost.

No difficulties with convergence were met at any deflection magnitudes, and

5
|
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it is believed that negligible errors are introduced in this part of the

response calculation.

The simplifications discussed above are involved in both the deflection
bound and the mode technique, with the exception of (7) which obviously refers
only to the latter approach. It may be noted that in the numerical evaluation
of the deflection bound, the iterative scheme used for determining the deflected
shape under static loading has common ground with that used in the numerical
solution of the eigen-problem of the extended mode technique.

It is seen that the errors that can be identified with the idealizations
and approximations as listed are mainly positive, i.e., such as to cause too
large a deflection. The exceptional cases are items (5) and (8), where no state-
ments on the sign of the error seem tenable. In some cases, for example the
neglect of elastic deformation and of strain rate history effects, the arguments
are somewhat conjectural. This seems unavoidable at the present stage.

The comparison of test results with the large deflection bounds indicates
that the method of calculation of the bounds is satisfactory. However, their
comparison with large deflections predicted by the mode technique shows incon-
sistencies. In the tests with uniform impulse where the intrinsic error is
positive, as are most of the other errors, the estimated deflection curve should
lie distinctly above the test points; the actual test points lie essentially
on the curves, Figs. 10, 11. In the tests with concentrated impulée, the in-
trinsic error is negative. This is shown clearly by the results for steel
frames in Fig. 8, which suggests that the other errors are small by comparison.
However, the results for the titanium frames in Fig. 9 are then anomalous,
since to explain them the incidental errors must be large. Here perhaps the
influence of elastic deformations is more important as indicated by the energy

ratio criterion.
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We note the comparison between test and estimated results for a secondary
deflection magnitude, namely the inward deflection at the top of each columm.
Figure 12 illustrates these results for the titanium frames of both types [1].
The test points agree reasonably well with the predictions of the extended
mode technique. In a "small deflection" theory this deflection, of course,
is zero.

Finally, Fig. 13 illustrates the comparison of the estimated response time
tg by the extended mode technique with the two times obtained from strain gage
records [1]. The time t% is the time for the first maximum strain. The time
tg is the intercept on the rising strain curve of a line drawn at the estimated
final (permanent) strain. The estimated response time falls between these two

measured times with surprising consistency.

In conclusion, the present work has illustrated the application to large
deflections of an impulsively loaded viscoplastic structure of bound and mode
estimation techniques. The efficiency of both techniques compared to purely
numerical approaches has been emphasized. Comparisons with fairly comprehensive
experimental results [1] have validated the deflection bound calculation, but
have shown up inconsistencies in the estimates of final deflections by the ex-
tended mode technique. These demonstrate the need for further study of the
approximations made in implementing this method. Despite this, it is worth
emphasizing that the estimated deflections by the extended mode method in most
cases agree extremely well with the final deflections observed in the tests.

In the one test series where the discrepancies are large (Fig. 9), the estimates

are conservative (actual permanent deflections are smaller); these occur in cir-

cumstances of relatively small final deflections where =lastic deflections are more

important. Hence there seems no doubt that practical use can be made of this

approach, with normal caution.
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Captions for Figures

Frame types considered here and in experiments [1]. Type (a) has
steel block at midpoint of transverse member, tvrpe (h) has uniform
transverse member.

Notation for mode form solution.

Final deflection as function of initial mode form velocity (hoth
dimensionless): (a) showine dependence on parameter a, (b) show-
ing dependence on power n of strain rate behavior law.

Time of response as function of initial mode form velocity (both
dimensionless): (a) showine dependence on parameter a, (b) show-
ine dependence on power n of strain rate behavior law.

Tvpical curves of mode velocity as function of time.

"Master response curves' of final deflection-thickness ratio as
function of initial mode velocity amplitude, for type (b) frames.

""Master response curves' of final deflection-thickness ratioc as
function of initial mode velocity amplitude, for type (a) frames.

Comparison of observed final midpoint deflections in tests [1]
with deflection bound and nredictions of mode approximation tech-
nique, for steel frames of type (a).

Comparison of observed final midpoint deflections in tests [1]
with deflection bound and predictions of mode approximation tech-
nique, for titanium frames of type (a).

Comparison of observed final midpoint deflections in tests [1]
with deflection bound and predictions of mnde approximation tech-
nique, for steel frames of type (h).

Comparison of observed final midpoint deflections in tests [1]
with deflection bound and predictions of mode anrproximation tech-
nique, for titanium frames of tyne (b).

Comparison of final lateral deflection at top of column observed
in tests [1] with predictions of the extended mode approximation
technique.

Comparison of time io final deflection predicted by extended mode
technique with times obtained from strain gage records in exneri-
ments [1]; t. is time of peak deflection (strain), t; is time
of intercept with rising strain-time curve of strairht line drawn

at final strain level; strain measured at ton of column.
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Appendix

The iterative scheme used to determine the instantaneous mode at each

time stage in the mode technique is essentially the same as that used in

the soiution for finite deflections of a circular plate [4]. It is note-
worthy that the deflection function giving the deflection bound can be
obtained by the same iteration scheme. We shall sketch briefly how the equa-
tions of the two problems can be put in analogous form, omitting most of
the details.

Equations only for the transverse member BC will be written, for
brevity. We look first at the mode technique. When the modal forms of
Egs. (20) are used, the dimensionless bending moment in the transverse
member BC can be written as

&* 1/n'
m=uz) [-67] senC-o1) (A1)

Equations (19b), (15d), (15b) can be integrated with respect to x and

put in the following forms:

pon Ll 2y oy

(19b) P ™ Llw 63 (A2)
A ol
(154) s = ¥bn J ¢,dx + s ] (A3)
1 %0 :

w, 1/n' 1/n' . [x

(15b) u(; ); [‘l-¢I| sgn(-¢g)] + Lsw' = ﬁ*[J ¢ Ix + A]
(e}

(A%)

Here S, and A are constants and the prime denotes differentiation with
respect to x, position in member BC measured from B. (All quantities refer

to this member, but si!::ripts are omitted). Similar equations can be

written for member AB, and the boundary conditions include fixing at A and
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C, continuity at B , and the normalizing condition 01 =lat C , After
use of Eq. (A3), Eq. (A4) can be written as

/¥ X
sgn(-¢'1'_)(|-¢;| ) = A{I ¢ dx + A - l&va‘L E¢2dx + So]} (AS)

(o]

where 1/n'

-anlz)

Integrating Eq. (A2), we obtain

g [[* it
<= e - e a0
(] o

At any stage of the response the slope function w'(x) can be
estimated from the field at a preceding stage together with the velocity and
acceleration fields at that stage. Admissible shape functions ¢1(x) in
BC and ¢2(y) in AB can also be guessed, satisfying the stated conditions
at A, B and C; the functions for the preceding stage may be used, except
at t = 0 . Eq. (A6) then furnishes 02(x) in BC , apart from integration
constants. With use of the analogous equations for AB and the fixing,
continuity, and normalization conditions, all of the integration constants
can be determined, and new shape functions obtained. From each set of
functions the quantity A (Eq. (A5)) can be computed frém the energy

rate-dissipation equation (14), which takes the form

1 L 1
I |-¢"|1+-' dx + L—I | 0"[1"?' dy
1

A:- . (A.’)

1 32 S P

(ol+¢ )dx+— (¢1+¢ )y + k
° l

Cycles of iteration may be terminated when the magnitude A reaches a

steady value. From the final values, the velocity and displacement fields
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where K

G o ks L

can be written, and approximate functions for a subsequent instant
obtained.

At the start, w' =0 and G: is chosen arbitrarily, with guessed
admissible functions 02(y) and ¢1(x) in AB and BC , respectively.
The response terminates at G*(tf) = 0 , final deflections being obtained
by interpolation when G* first becomes negative.

The deflection bound requires only one determination of shape functions

over the frame, rather than functions at a sequence of times during the
response as in the mode technique. To obtain an upper bound on the final
deflection of the midpoint C of the frame, a force P is applied at
this point. If the work done quasi-statically by this force in time te

is not less than Ko , where t_ is the actual response 'ime and Ko the given

f
initial kinetic energy, then the deflection corresponding to this force is

an upper bound on the same component of deflection resulting from the given
initial velocities.

Use of minimum work paths to fixed final strains at time te [2,3]
for the material behavior represented by Egs. (11,12) enables us to write

moment-curvature relations
n'

# f
sgn M (A8)

L]
n'+l uHo

. f .
xtf =K = Kotf

n'

f and Mf are curvature and moment at time te s respectively.

Nondimensional stresses may be defined as

t. 1/

o n' M 2t L n' M
Raln) MmN R o

where 1T = 2Ll¢p7oo is the reference time used also in the mode method.
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The equation of equilibrium for the beam member BC with a concentrated

force P at L,, written as a delta function, is
M+ (W) = - 5 8(x-L)) . (A10)

This may be integrated once, and with nondimensional variables as in Egs.

(9) and (A9) the four equations for this member can be written as

m' + 4sw' = p (Alla)
1/n' 1 1/n'
m = u|—— sgn k= u|= Fw" sgn(-w") (A11b)
KT
s = El = constant (Allc)

S - .;—'-Eli (w' )2 (Al1d)
1

1/n' LlP 3. 2
where p = s and a = BLls°/p7o° /H” . The analogous
equations for AC , and the boundary and continuity equations, are omitted

for brevity. The work-kinetic energy condition Eq. (1b) takes the form

1/n!
K t 1 Ay A i
€ 2 [—}] 2" i + '172'J " *ay| (A12)
o 1 o l70

In these equations, the response time t. appears explicitly only in
Eq. (Al12), because of the definitions of m and ; . The inequality shows
that te s which is unknown, may be replaced by an upper bound t; . We
shall not attempt to derive an exact upper bound. Note that te appears
only as t;,n' , where n' is large (e.g., 10), so results are insensitive
to tg . For small deflections and rigid-perfectly plastic behavior, upper

bounds on the response time for the present frame problems can be obtained

by Lee's method [17] and written as

S ey
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t: = n -Tﬁfjl (A13)

where n = 2k/1+1/3k for type (a) frames (attached mass and concentrated

impulse) and n = 2//3 for type (b) frames. The effect of finite deflections

is to lengthen, while that of strain rate sensitivity is to shorten the
response time. Hence while the expressions for t; are not exact for
our conditions, they are probably more than adequate.

It is convenient to write the deflection field in the form

w D¢l(x) in BC ; w

D¢, (y) in AB (Al4a)

u = Dp,(x) in BC ; u D¢2(y) in AB (Al4b)

where D is the dimensionless displacement at the midpoint C of the
beam member. An iteration scheme is started by giving D an arbitrary
value, e.g., D = 20 , and assuming numerical functions ¢1(x) in BC and
¢2(y) in AB . Equations such as Eq. (Alld) then furnish the correspond-
ing axial components 02(x) in BC and ol(y) in AB . The equations
of equilibrium (e.g., Eq. khlla)), together with the moment-curvature
equations (e.g., Eq. (Allb)), can now be written entirely in terms of the
transverse shape functions ¢l(x) and ¢2(y) and their derivatives,
so that from starting functions new functions are obtained by quadratures,
with constants of integration which must be found from the boundary and
continuity equations. The formsof the equations are identical with those
in the mode method, with different ﬁeaning of the constants.

The experiments with which we have made comparisons involve direct
measurements of the total impulse (I) applied to the frame. Thus for the

two frame types
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Using these and the expressions for the upper bound on response time, Eq. (A13),

£

we have relations between impulse and midpoint deflection ratio D = w, H

as follows

1 1
[ 2 1 o 2\ 2n7
Type ()t | —5o—— s p 1D wloy(x),  45(y)]
kb"H L.po 1 n Lla
ke (A16a)

with n = 2k/1 + 1/3% , k = G/2Llpr
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where (for both types)

1+ — L, 1 1+ :—,
dx + E"[ I ¢'2'(y)l dy (Al6c)
1

[¢]

1 _
WLat(x), e3(] = [o - o1

Suitable values of w = ¢ /9  and V = n'/n are obtained from the initial
strain rates by means of Eq.(11). The initial mode form velocity field, with
magnitude v;: derived from given initial velocity or impulse values through

the mode matching technique of Eq.(6), may be used with ¢(x) and ¢(y) determined
as outlined above. This field gives initial maximum curveture rates and strain

rates which, of course, are not the actual initial strain rates, but are

smoothed values that are appropriate for present purposes.
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